Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors

2017 
Summary Evidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement. Our in vitro studies confirm that NKRs differentiate between peptide-bound and peptide-free HLA-F. The complex structure of peptide-loaded β 2 m-HLA-F bound to the inhibitory LIR1 revealed similarities to high-affinity recognition of the viral MHC-I mimic UL18 and a docking strategy that relies on contacts with HLA-F as well as β 2 m, thus precluding binding to HLA-F OCs. These findings provide a biochemical framework to understand how HLA-F could regulate immunity via interactions with NKRs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    62
    Citations
    NaN
    KQI
    []