Synthesis of task and message activation models in real-time distributed automotive systems

2007 
Modern automotive architectures support the execution of distributed safety- and time-critical functions on a complex networked system with several buses and tens of ECUs. Schedulability theory allows the analysis of the worst case end-to-end latencies and the evaluation of the possible architecture configurations options with respect to timing constraints. The paper presents an optimization framework, based on an ILP formulation of the problem, to select the communication and synchronization model that leverages the trade-offs between the purely periodic and the precedence constrained data-driven activation models to meet the latency and jitter requirements of the application. The authors demonstrate its effectiveness by optimizing a complex automotive architecture
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    33
    Citations
    NaN
    KQI
    []