An acetylene-bridged 6,8-purine dimer as a fluorescent switch-on probe for parallel G-quadruplexes.

2013 
Exploiting chemistry to develop compounds capable of selective recognition of biomolecules or interfering with cellular processes is the essence of chemical biology.1 One example of such biologically relevant targets are nucleic acid G-quadruplexes.2 These non-canonical structures of DNA and RNA have been widely hypothesized to play a role in the regulation of crucial genomic functions, such as telomere maintenance,3 transcription,4 and translation.5 Recently, we showed that a small G-quadruplex-interacting molecule has the ability to activate the DNA damage response machinery in human cancer cells in a replication- and transcription-dependent manner.6
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    37
    Citations
    NaN
    KQI
    []