Control of the Pore Structure of Plasma-Sprayed Thermal Barrier Coatings through the Addition of Unmelted Porous YSZ Particles

2021 
In this study, a new pore structure control method for plasma-sprayed thermal barrier coatings (TBCs) through the addition of unmelted, porous yttria-stabilized zirconia (YSZ) particles was investigated. Through a unique way of feeding powder, two powder feeders were used simultaneously at different positions of the plasma flame to deposit a composite structure coating in which a conventional plasma-sprayed coating was used as a matrix and unmelted micro-agglomerated YSZ particles were dispersed in the dense conventional coating matrix as second-phase particles. The effects of the distribution and content of second-phase particles on the microstructure, mechanical properties, and lifetime were explored in a furnace cyclic test (24 h) of the composite coating. The mechanical properties and lifetime of the composite coating depend on the content and morphology of the particles embedded in the coating. The lifetime of the composite structure coatings is significantly higher than that of the conventional coatings. By adjusting the spraying parameters, the lifetime of the composite coating prepared under the optimum process is up to 145 days, which is about three times that of the conventional coating. The results of this study provide guidance for the preparation of high-performance composite structure TBCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []