Frictional Heating Processes and Energy Budget During Laboratory Earthquakes

2018 
During an earthquake, part of the released elastic strain energy is dissipated within the slip zone by frictional and fracturing processes, the rest being radiated away via elastic waves. Frictional heating thus plays a crucial role in the energy budget of earthquakes, but, to date, it cannot be resolved by seismological data. Here we investigate the dynamics of laboratory earthquakes by measuring frictional heat dissipated during the propagation of shear instabilities at typical seismogenic depth stress conditions. We perform, for the first time, the full energy budget of earthquake rupture and demonstrate that increasing the radiation efficiency, i.e. the ratio of energy radiated away via elastic waves compared to that dissipated locally, increases with increasing thermal - frictional - weakening. Using an in-situ carbon thermometer, we map frictional heating temperature heterogeneities - 'heat' asperities - on the fault surface. Combining our microstructural, temperature and mechanical observations, we show that an increase in fault strength corresponds to a transition from a weak fault with multiple strong asperities, but little overall radiation, to a highly radiative fault, which behaves as a single strong asperity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    17
    Citations
    NaN
    KQI
    []