Tribological behaviors of precipitates reinforced Cr-Ni-Mo-V steel lubricated by water or water-silica mixture

2018 
Purpose This paper aims to investigate the friction and wear properties of Cr-Ni-Mo-V steel against 440C stainless steel under both water and water–silica mixture lubricant. Design/methodology/approach The Cr-Ni-Mo-V steel specimens were taken from a forged steel brake disc with the process of quenching at 900°C and tempering at 600°C. The tribological testing was performed using a contact configuration of ball-on-flat with a liquid cell according to the ASTM standard. Detailed examinations on the worn surface were analyzed using a scanning electron microscope. Findings The results indicate that the friction coefficient and friction damage of the steel sliding under water–silica mixture are higher than those under water. The friction coefficient decreases with increasing load and increases with the sliding speed for the two lubricants. The mass wear rate presents a rising trend with both sliding load and speed. The wear mechanisms of the Cr-Ni-Mo-V steel sliding under the two lubricants are oxidation wear, abrasive wear and fatigue wear. Research limitations/implications Because of the chosen tribological testing approach, the research results could not describe the tribological performance of the brake disc accurately during actual braking process of the high-speed train. Therefore, researchers are encouraged to test the proposed propositions further. Originality/value This study shows that the tribology behavior of the Cr-Ni-Mo-V steel with water or water–silica mixture lubrications helps the industrial firms and academicians to work on the wear of the brake disc in rainwater or wet environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []