Drug tendering: drug supply and shortage implications for the uptake of biosimilars

2017 
: Due to the continued increase in global spending on health care, payers have introduced a number of programs, policies, and agreements on pharmaceutical pricing in order to control costs. While incentives to increase generic drug use have achieved significant savings, other cost-containment measures are required. Tendering is a formal procedure to purchase medications using competitive bidding for a particular contract. Although useful for cost containment, tendering can lead to decreased competition in a given market. Consequently, drug shortages can occur, resulting in changes to treatment plans to products that may have lower efficacy and/or an increased risk of adverse effects. Therefore, care must be taken to ensure that tendering does not negatively impact patient care or the health care system. A large and expanding portion of total pharmaceutical expenditure is for biologic therapies. These agents have revolutionized the treatment of many diseases, including cancer and inflammatory conditions; however, patient access to biologic drugs can be limited due to availability, insurance coverage, and cost. As branded biologic therapies reach the end of patent- and data-protection periods, biosimilars are being approved as lower-cost alternatives. Biosimilars are products that are highly similar to the originator product with no clinically meaningful differences in terms of safety, purity, or potency. As more biosimilars receive regulatory approval and adoption increases, these therapies are expected to have an impact on global health care spending and should result in overall savings. However, the use of tendering to maximize the potential benefits of biosimilars has varied across the world. Therefore, the objectives of this review are to examine the drug-tendering process and its implications on drug supply and drug shortages, as well as to describe biosimilars and how tendering may influence their uptake.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    27
    Citations
    NaN
    KQI
    []