Wide-Ranging Effects on the Brain Proteome in a Transgenic Mouse Model of Alzheimer's Disease Following Treatment with a Brain-Targeting Somatostatin Peptide.

2021 
Alzheimer's disease is the most common neurodegenerative disorder characterized by the pathological aggregation of amyloid-β (Aβ) peptide. A potential therapeutic intervention in Alzheimer's disease is to enhance Aβ degradation by increasing the activity of Aβ-degrading enzymes, including neprilysin. The somatostatin (SST) peptide has been identified as an activator of neprilysin. Recently, we demonstrated the ability of a brain-penetrating SST peptide (SST-scFv8D3) to increase neprilysin activity and membrane-bound Aβ42 degradation in the hippocampus of mice overexpressing the Aβ-precursor protein with the Swedish mutation (APPswe). Using LC-MS, we further evaluated the anti-Alzheimer's disease effects of SST-scFv8D3. Following a triple intravenous injection of SST-scFv8D3, the LC-MS analysis of the brain proteome revealed that the majority of downregulated proteins consisted of mitochondrial proteins regulating fatty acid oxidation, which are otherwise upregulated in APPswe mice compared to wild-type mice. Moreover, treatment with SST-scFv8D3 significantly increased hippocampal levels of synaptic proteins regulating cell membrane trafficking and neuronal development. Finally, hippocampal concentrations of growth-regulated α (KC/GRO) chemokine and degradation of neuropeptide-Y were elevated after SST-scFv8D3 treatment. In summary, our results demonstrate a multifaceted effect profile in regulating mitochondrial function and neurogenesis following treatment with SST-scFv8D3, further suggesting the development of Alzheimer's disease therapies based on SST peptides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []