Microbiome facilitated pest resistance: potential problems and uses

2018 
Microbiome organisms can degrade environmental xenobiotics including pesticides, conferring resistance to most types of pests. Some cases of pesticide resistance in insects, nematodes and weeds are now documented to be due to microbiome detoxification, and is a demonstrated possibility with rodents. Some cases of metabolic resistance may have been misattributed to pest metabolism, and not to organisms in the microbiome, because few researchers use axenic pests in studying pesticide metabolism. Instances of microbiomes evolving pesticide resistance contributing to resistance of their hosts may become more common due the erratic nature of climate change, as microbiome populations typically increase and evolve faster in stressful conditions. Conversely, microbiome organisms can be engineered to provide crops and beneficial insects with needed resistance to herbicides and insecticides, respectively, but there has not been sufficient efficacy to achieve commercial products useful at the field level, even with genetically engineered microbiome organisms. © 2017 Society of Chemical Industry
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    22
    Citations
    NaN
    KQI
    []