Analysis and Design of a Paraffin/Graphite Composite PCM Integrated in a Thermal Storage Unit

2008 
The addition of latent heat storage systems in solar thermal applications has several benefits including volume reduction of storage tanks and maintaining the temperature range of the thermal storage. A Phase change material (PCM) provides high energy storage density at a constant temperature corresponding to its phase transition temperature. In this paper, a high temperature PCM (melting temperature 80°C) made of a composite of paraffin and graphite was tested to determine its thermal properties. Tests were conducted with a differential scanning calorimeter (DSC) and allowed the determination of the melting and solidification characteristics, latent heat, specific heat at melting and solidification, and thermal conductivity of the composite. The results of the study showed an increase in thermal conductivity by a factor of 4 when the mass fraction of the graphite in the composite was increased to 16.5%. The specific heat of the composite PCM (i.e., CPCM) decreased as the thermal conductivity increased, while the latent heat remained the same as the PCM component. In addition, the phase transition temperature was not influenced by the addition of expanded graphite. To explore the feasibility of the CPCM for practical applications, a numerical solution of the phase change transition of a small cylinder was derived. Finally, based on the properties obtained in DSC, a numerical simulation for a known volume of CPCM in a water tank was produced and indicated a reduction in solidification time by a factor of six.Copyright © 2008 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []