An approach to the concept of resolution optimization through changes in the effective chromatographic selectivity.

1999 
It is very common chromatographic practice to optimize resolution by making changes in selectivity by systematically varying key retention controlling factors. In many instances, a change in conditions merely results in monotonic, systematic variation in the relative retention of all pairs of peaks. Useful or “effective” changes in selectivity generally result when we see peak crossovers, changes in elution order or differential changes in band position of three or more peaks upon changing some operating condition. In this work, we demonstrate that changes in what we now call the effective selectivity can only take place when retention depends on a minimum of two solute molecular properties and further the dependencies must differ for the two sets of conditions. To verify our concept, real chromatographic data are examined from the viewpoint of linear solvation energy relationships (LSERs) and linear solvent strength theory. Five different RPLC stationary phases in different eluents are compared to elucid...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    67
    Citations
    NaN
    KQI
    []