Both antireflection and superhydrophobicity structures achieved by direct laser interference nanomanufacturing

2014 
Inspired by nature, a number of techniques have been developed to fabricate the bionic structures of lotus leaves and moth eyes in order to realize the extraordinary functions of self-cleaning and antireflection. Compared with the existing technologies, we present a straightforward method to fabricate well-defined micro and nano artificial bio-structures in this work. The proposed method of direct laser interference nanomanufacturing (DLIN) takes a significant advantage of high efficiency as only a single technological procedure is needed without pretreatment, mask, and pattern transfer processes. Meanwhile, the corresponding structures show both antireflection and superhydrophobicity properties simultaneously. The developed four-beam nanosecond laser interference system configuring the TE-TE-TE-TE and TE-TE-TE-TM polarization modes was set up to generate periodic micro cone and hole structures with a huge number of nano features on the surface. The theoretical and experimental results have shown that the periodic microcone structure exhibits excellent properties with both a high contact angle (CA = 156.3°) and low omnidirectional reflectance (5.9–15.4%). Thus, DLIN is a novel and promising method suitable for mass production of self-cleaning and antireflection surface structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    16
    Citations
    NaN
    KQI
    []