Noise, not squeezing, boosts synchronization in the deep quantum regime.

2020 
Synchronization occurs ubiquitously in nature. The van der Pol oscillator has been a favorite model to investigate synchronization. Here we study the oscillator in the deep quantum regime, where nonclassical effects dominate the dynamics. Our results show: (i) squeezed driving loses its effect, (ii) noise boosts synchronization, (iii) synchronization is bounded, and (iv) the limit-cycle is insensitive to strong driving. We propose a synchronization measure and analytically calculate it. These results reflect intrinsic differences between synchronization in the quantum and deep quantum regimes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    12
    Citations
    NaN
    KQI
    []