Present challenges in cervical cancer prevention: Answers from cost-effectiveness analyses

2018 
Abstract Simulation models are commonly used to address important health policy issues that cannot be explored through experimental studies. These models are especially useful to determine a set of strategies that result in a good value for money (cost-effectiveness). Several mathematical models simulating the natural history of HPV and related diseases, especially cervical cancer, have been developed to calculate a relative effectiveness and cost-effectiveness of HPV vaccination and cervical cancer screening interventions. Virtually all cost-effectiveness analyses identify HPV vaccination programmes for preadolescent girls to be cost-effective, even for relatively low vaccination coverage rates. Routine vaccination of preadolescent girls is the primary target population for HPV vaccination as it shows to provide the greatest health impact. Cost-effectiveness analyses assessing other vaccine target groups are less conclusive. Adding additional age-cohorts would accelerate health benefits in some years, although cost-effectiveness becomes less favourable as age at vaccination increases. Including men in HPV vaccination programmes may be a less efficient strategy if done at the expense of female vaccination coverage for reducing the burden of HPV in the population. However, as the HPV vaccine price decreases, the cost-effectiveness of universal vaccination improves, becoming equally as efficient as female-only vaccination. Vaccine price is a decisive factor in the cost-effectiveness analyses. The lower the price, the greater the likelihood that vaccination groups other than the primary target would be considered cost-effective.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    6
    Citations
    NaN
    KQI
    []