Zerumbone Regulates DNA Repair Responding to Ionizing Radiation and Enhances Radiosensitivity of Human Prostatic Cancer Cells

2018 
Introduction. Radiation therapy using ionizing radiation is widely used for the treatment of prostate cancer. The intrinsic radiation sensitivity of cancer cells could be enhanced by modulating multiple factors including the capacity to repair DNA damage, especially double-strand breaks (DSBs). We aimed to examine the effect of zerumbone on radiation sensitivity and its protective effects against ionizing radiation–induced DSB in human prostate cancer cells. Materials and Methods. The human prostate cancer PC3 and DU145 cell lines were used. A colony formation assay was performed to analyze the radiation survival of cells. DNA histogram and generation of reactive oxygen species (ROS) were examined using flow cytometry. Western blotting was used to examine the expression of regulatory molecules related to DNA damage repair. Results. Pretreatment with zerumbone enhanced the radiation effect on prostate cancer cells. Zerumbone delayed the abrogation of radiation-induced expression of γ-H2AX, an indicator of ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    12
    Citations
    NaN
    KQI
    []