Insights into the biomass based compounds valorization in batch versus continuous flow

2020 
Furfural (FF) and 5-hydroxymethylfurfural (HMF) have been identified as important bio-based versatile chemicals, their oxidation, reduction, hydrolysis and polymerization products attracted more interests for the high value and Wide applications. The aim of this PhD work is to realize the conversion of FF and HMF into high value downstream products in both conventional and intensification processes. Therefore, the comparation between conventional heating and microwave heating method, batch With continuous flow regime was explored regarding FF derivatives and HMF valorization reaction in my work. The development of greener, durable and efficient catalysts to realize the conversion of bio-based compounds has been employed. Target compounds such as methyl levulinate (ML), gamma-valerolactone (GVL), 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), 2,5-furandicarboxylic acid (FDCA) were investigated. At the same time, the application of FDCA was also performed, the production of three differen kinds of furan-based polyesters: polyethylene-2,5-furandicarboxylate (PEF), polyhydropropyl-2,5furandicarboxylate (PHPF) and polydiglycerol-2,5-furandicarboxylate (PDGF) were realized through polytransesterification between diethyl furan-2,5-dicarboxylate (DEFDC) and a defined diol furan-based prepolyme or pure diglycerol. Several important issues were identified in order to design processes greener than the current ones. For instance, the experiments for HMF oxidation were performed in water. Microwave irradiation has been chosen as the heating method to accelerate the reaction. Continuous flow reactors, such as Pheonix, H-cube Pro as well as microwave continuous flow were identified as interesting alternatives to improve the productivities of target compounds. As a result, some promising results were obtained in the viewpoint of industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []