Heterogeneous Slow Dynamics of Imidazolium-Based Ionic Liquids Studied by Neutron Spin Echo

2013 
We have investigated structure and relaxation phenomena for ionic liquids 1-octyl-3-methylimidazolium hexafluorophosphate (C8mimPF6) and bis(trifluoromethylsulfonyl)imide (C8mimTFSI) by means of neutron diffraction and neutron spin echo (NSE) techniques. The diffraction patterns show two distinct peaks appeared at scattering vectors Q of 0.3 and 1.0 A–1. The former originates from the nanoscale structure characteristic to ionic liquids and the latter due to the interionic correlations. Interestingly, the intensity of the low-Q peak drastically grows upon cooling and keeps growing even below the glass transition temperature. The NSE measurements have been performed at these two Q positions, to explore the time evolution of each correlation. The relaxation related to the ionic correlation (ionic diffusion) is of Arrhenius-type and exhibits nonexponential behavior. The activation energy (Ea) of the ionic diffusion, which is linked to viscosity, depends on the type of anion; the larger is the anion size, the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    97
    Citations
    NaN
    KQI
    []