Functional Stability and Applicability of Heavy Metal Passivators in Reducing Cd Uptake by Lettuce

2021 
The use of heavy metal passivators to prevent vegetables from absorbing heavy metals is an important measure to control heavy metal-polluted vegetable fields and to ensure the safe production of vegetables. A pot experiment of planting three times in succession was conducted to study the effects of Bacillus megaterium N3 (N3), rice husk biochar (BC), sheep manure organic fertilizer (SM), strain N3 combined with biochar (BC+N3), and strain N3 combined with sheep manure (SM+N3) on Cd uptake and the functional stability of lettuce using a heavy metal passivator only at the first planting. The comprehensive applicability of the passivation materials was evaluated by the dynamic weighted comprehensive function. The results showed that when lettuce was planted for the first time, compared with the control, all the heavy metal passivators could significantly reduce (61.2%-81%) the Cd content in the edible part of the lettuce. However, in the third cultivation of lettuce, only SM+N3 could significantly reduce the Cd uptake by lettuce, which indicated that SM+N3 had the best functional stability. The dynamic weighted comprehensive function was used to evaluate the Cd content in the edible part of fresh lettuce, available Cd content in the soil, yield, and remediation cost. The results showed that the comprehensive applicability of SM+N3 was the best, followed by that of SM, BC+N3, and BC, and the comprehensive evaluation effect of strain N3 was the worst. The results of this study provide a theoretical basis and technical support for remediation of heavy metal-contaminated vegetable fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []