Antisense modulation of 5,10-methylenetetrahydrofolate reductase expression produces neural tube defects in mouse embryos

2000 
The role of folate metabolism in producing neural tube defects (NTDs) in humans is unknown. In the current study, antisense oligodeoxyribonucleotide technology was utilized to disrupt normal expression of the gene for 5,10-methylenetetrahydrofolate reductase (MTHFR) in organogenesis-stage mouse embryos. Two different antisense probes were microinjected into the amniotic sac of gestation day (GD) 8 mouse embryos with PBS or scrambled sense oligodeoxyribonucleotides injected into control embryos. Concentration-dependent increases in the frequencies of embryos with NTDs were observed for both antisense sequences. The level of mRNA for MTHFR was decreased in embryos treated with the higher concentration of one antisense sequence, indicating that the sequence is able to decrease gene expression. 5-methyltetrahydrofolate, the product of the MTHFR reaction, was able to decrease the incidence of antisense-induced NTDs, but co-injection with L-methionine did not. These results suggest that reduced expression of MTHFR may play a role in producing NTDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    6
    Citations
    NaN
    KQI
    []