A hybrid nanobiocatalyst with in situ encapsulated enzyme and exsolved Co nanoclusters for complete chemoenzymatic conversion of methyl parathion to 4-aminophenol.

2021 
Abstract Combination of enzymatic and chemical reactions provides tremendous possibilities for chemoenzymatic cascade processes. However, constructing efficient hybrid catalysts still faces great challenges. Herein, we develop a hybrid catalyst by in situ encapsulating organophosphorus hydrolase (OPH) into a Zn-doped Co-based ZIF (0.8CoZIF) via biomimetic mineralization for the chemoenzymatic cascade conversion of methyl parathion to 4-nitrophenol and then 4-aminophenol. The exsolved Co nanoclusters in Zn/Co-ZIF are found to catalyze 4-nitrophenol reduction into 4-aminophenol in the presence of sodium borohydride (NaBH4). The as-synthesized OPH@0.8CoZIF catalyzes the complete conversion of 95 μM methyl parathion at nearly 100% 4-aminophenol production in the presence of 50 mM NaBH4 within 15 min, which is 1/4 that of the physical mixture of OPH and 0.8CoZIF, benefiting from the MP accumulation and substrate channeling in the hybrid catalyst. The maximum cascade conversion rate of MP to 4-AP reaches 8.07 μmol·min-1·g-catalyst-1, which is higher than most of the reported chemoenzymatic cascade catalysts. Therefore, the hybrid nanocatalyst containing Co-ZIF-based catalyst and OPH is successfully fabricated and enables to catalyze the complete conversion of a toxic pollutant like methyl parathion into a non-toxic resource like 4-aminophenol for recycling in useful chemical synthesis through efficient one-pot cascade reactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []