Adverse cardiovascular magnetic resonance phenotypes are associated with greater likelihood of incident coronavirus disease 2019: findings from the UK Biobank.

2021 
Background Coronavirus disease 2019 (COVID-19) disproportionately affects older people. Observational studies suggest indolent cardiovascular involvement after recovery from acute COVID-19. However, these findings may reflect pre-existing cardiac phenotypes. Aims We tested the association of baseline cardiovascular magnetic resonance (CMR) phenotypes with incident COVID-19. Methods We studied UK Biobank participants with CMR imaging and COVID-19 testing. We considered left and right ventricular (LV, RV) volumes, ejection fractions, and stroke volumes, LV mass, LV strain, native T1, aortic distensibility, and arterial stiffness index. COVID-19 test results were obtained from Public Health England. Co-morbidities were ascertained from self-report and hospital episode statistics (HES). Critical care admission and death were from HES and death register records. We investigated the association of each cardiovascular measure with COVID-19 test result in multivariable logistic regression models adjusting for age, sex, ethnicity, deprivation, body mass index, smoking, diabetes, hypertension, high cholesterol, and prior myocardial infarction. Results We studied 310 participants (n = 70 positive). Median age was 63.8 [57.5, 72.1] years; 51.0% (n = 158) were male. 78.7% (n = 244) were tested in hospital, 3.5% (n = 11) required critical care admission, and 6.1% (n = 19) died. In fully adjusted models, smaller LV/RV end-diastolic volumes, smaller LV stroke volume, and poorer global longitudinal strain were associated with significantly higher odds of COVID-19 positivity. Discussion We demonstrate association of pre-existing adverse CMR phenotypes with greater odds of COVID-19 positivity independent of classical cardiovascular risk factors. Conclusions Observational reports of cardiovascular involvement after COVID-19 may, at least partly, reflect pre-existing cardiac status rather than COVID-19 induced alterations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    6
    Citations
    NaN
    KQI
    []