Numerical studies of the influence of various geometrical features of a multispiked connecting scaffold prototype on mechanical stresses in peri-implant bone

2018 
AbstractThe multispiked connecting scaffold (MSC-scaffold) prototype is an essential innovation in the fixation of components of resurfacing arthroplasty (RA) endoprostheses, providing their entirely non-cemented and bone-tissue-preserving fixation in peri-articular bone. An FE study is proposed to evaluate the influence of geometrical features of the MSC-scaffold on the transfer of mechanical load in peri-implant bone. For this study, an FE model of Ti-Alloy MSC-scaffold prototype embedded in a bilinear elastic, transversely isotropic bone material was built. For the compressive load on the MSC-scaffold, maps of Huber-Mises-Hencky (HMH) stress in peri-implant bone were determined. The influence of the distance between the bases of neighbouring spikes, the apex angle of spikes, and the height of the spherical cup of spikes of the MSC-scaffold were analysed. It was found that the changes in the distance between the bases of neighbouring spikes from 0.2 to 0.5 mm cause the HMH stress to increase in bone mat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []