Turbulence Modeling Verification and Validation
2014
Computational fluid dynamics (CFD) software that solves the Reynolds-averaged Navier-Stokes (RANS) equations has been in routine use for more than a quarter of a century. It is currently employed not only for basic research in fluid dynamics, but also for the analysis and design processes in many industries worldwide, including aerospace, automotive, power generation, chemical manufacturing, polymer processing, and petroleum exploration. A key feature of RANS CFD is the turbulence model. Because the RANS equations are unclosed, a model is necessary to describe the effects of the turbulence on the mean flow, through the Reynolds stress terms. The turbulence model is one of the largest sources of uncertainty in RANS CFD, and most models are known to be flawed in one way or another. Alternative methods such as direct numerical simulations (DNS) and large eddy simulations (LES) rely less on modeling and hence include more physics than RANS. In DNS all turbulent scales are resolved, and in LES the large scales are resolved and the effects of the smallest turbulence scales are modeled. However, both DNS and LES are too expensive for most routine industrial usage on today's computers. Hybrid RANS-LES, which blends RANS near walls with LES away from walls, helps to moderate the cost while still retaining some of the scale-resolving capability of LES, but for some applications it can still be too expensive. Even considering its associated uncertainties, RANS turbulence modeling has proved to be very useful for a wide variety of applications. For example, in the aerospace field, many RANS models are considered to be reliable for computing attached flows. However, existing turbulence models are known to be inaccurate for many flows involving separation. Research has been ongoing for decades in an attempt to improve turbulence models for separated and other nonequilibrium flows. When developing or improving turbulence models, both verification and validation are important steps in the process. Verification insures that the CFD code is solving the equations as intended (no errors in the implementation). This is typically done either through the method of manufactured solutions (MMS) or through careful step-by-step comparisons with other verified codes. After the verification step is concluded, validation is performed to document the ability of the turbulence model to represent different types of flow physics. Validation can involve a large number of test case comparisons with experiments, theory, or DNS. Organized workshops have proved to be valuable resources for the turbulence modeling community in its pursuit of turbulence modeling verification and validation. Workshop contributors using different CFD codes run the same cases, often according to strict guidelines, and compare results. Through these comparisons, it is often possible to (1) identify codes that have likely implementation errors, and (2) gain insight into the capabilities and shortcomings of different turbulence models to predict the flow physics associated with particular types of flows. These are valuable lessons because they help bring consistency to CFD codes by encouraging the correction of faulty programming and facilitating the adoption of better models. They also sometimes point to specific areas needed for improvement in the models. In this paper, several recent workshops are summarized primarily from the point of view of turbulence modeling verification and validation. Furthermore, the NASA Langley Turbulence Modeling Resource website is described. The purpose of this site is to provide a central location where RANS turbulence models are documented, and test cases, grids, and data are provided. The goal of this paper is to provide an abbreviated survey of turbulence modeling verification and validation efforts, summarize some of the outcomes, and give some ideas for future endeavors in this area.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
9
References
6
Citations
NaN
KQI