Morphological and functional comparisons of normal and hypertrophied kidneys of adult domestic fowl (Gallus gallus).

1990 
Similar to mammals, kidneys of domestic fowl undergo compensatory hypertrophy after loss of functional renal mass. Because this species continues to develop new nephrons for up to 12-wk posthatch, renal hyperplasia might play a significant role in compensatory growth. Either transient or permanent loss of approximately 60% of the right kidney was produced in 2- to 3-wk-old roosters by simple ureteral transection or by removing a 1-mm segment of ureter at the level of the ischiadic artery, respectively. In the latter (experimental) group, right anterior and medial divisions atrophied leaving only the posterior division intact. Spontaneous reanastomosis occurred in the former (reconnected) group, and all three divisions were present at death. Control birds were untouched as were the left kidneys of experimental and reconnected birds. At 40-50 wk, renal function was measured separately in right and left kidneys of all groups during five different infusion protocols. Compared with control kidneys, experimental kidneys had a 50-60% weight gain, and their glomerular size distribution profile was shifted to the right (larger glomeruli). Reconnected kidneys were not hypertrophied, and their profile was shifted to the left (smaller glomeruli). Neither group had significant formation of new nephrons. Once variations in kidney weight were taken into account, there were no differences between hypertrophied (experimental) and control kidneys in urine flow rate (UFR), glomerular filtration rate (GFR), paraaminohippuric acid (PAH) clearance, UFR/GFR, urine osmolality, urine/plasma osmolality, osmolal clearance, free water clearance, Na and K load, absolute Na and K excretion, and fractional Na and K excretion except as follows: 1) during infusion of isotonic mannitol-dextrose at 0.1 ml.min-1.kg body wt-1 experimental kidneys had a lower fractional excretion of K than control kidneys, and 2) during brisk osmotic diuresis (isotonic mannitol-dextrose at 0.4 ml.min-1.kg body wt-1) experimental kidneys had higher UFR and free water clearance and lower urine osmolality and urine/plasma osmolality than control kidneys. Reconnected kidneys differed from control kidneys in only 1 of 210 comparisons. Permanent loss of functional renal mass in young birds produces significant compensatory renal hypertrophy that is due to enlargement of existing nephrons rather than formation of new nephrons. Hypertrophied kidneys function like normal kidneys except under conditions of brisk osmotic diuresis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    14
    Citations
    NaN
    KQI
    []