Hydrogen Evolution on Nano-Structured CuO/Pd Electrode: Raman Scattering Study

2019 
In this study, the processes taking place on the surfaces of nanostructured Cu/CuO and Cu/CuO/Pd electrodes at different potential, E, values in the solutions of 0.1 M KOH in H 2 O and D 2 O (heavy water) were probed by surface enhanced Raman spectroscopy (SERS), and the analysis of electrochemical reactions occurring under experimental conditions is presented. The bands of the SERS spectra of the Cu/CuO/Pd electrode observed in the range of E values from +0.3 V to 0 V (standard hydrogen electrode (SHE)) at 1328–1569 cm − 1 are consistent with the existence of species that are adsorbed or weakly bound to the surface with the energy of interaction close to 15–21 kJ mol − 1 . These bands can be attributed to the ad(ab)sorbed (H 3 O + ) ad , (H 2 + ) ab , and (H 2 + ) ad ions as intermediates in reversible hydrogen evolution and oxidation reactions (HER/HOR) taking place on the Cu/CuO/Pd electrode. There was no isotopic effect observed; this is consistent with the dipole nature of the electron-ion pair formation of adsorbed (H 3 O + ) ad and (H 2 + ) ad or (D 3 O + ) ad and (D 2 + ) ad . In accordance with the literature data, SERS bands at 125–146 cm − 1 and ∼520–565 cm − 1 were assigned to Cu(I) and Cu(II) oxygen species. These findings corroborate the quantitative stepwise mechanism of water reduction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []