A Nonlinear Adaptive Observer-Based Differential Evolution Algorithm to Multiparameter Fault Diagnosis

2020 
In this paper, a novel adaptive diagnosis scheme is proposed for multiparametric faults of nonlinear systems by using the model and intelligent optimization-based approaches. The key idea of the proposed method is to analyze the correlation of the output signals between the real system and the fault identification system instead of residual. A new adaptive scheme is built based on an adaptive observer and differential evolution algorithm. Meanwhile, the conditions of detectability and identifiability of faults are analyzed. The isolation and estimation of the multiparametric fault are formulated as the solution of an optimization problem that is solved by using a differential evolutionary algorithm (DE). The fitness function of DE is constructed by the correlation coefficient equations in which the faulty components are contained. The application on a coupled three water tank model attests the feasibility and validity of the suggested approach. Simulation and experimental results show that the developed method is applicable to diagnose either single or multiparameter faults on-line.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []