On the time-dependent electrolyte Seebeck effect.

2021 
Single-ion Soret coefficients αi characterize the tendency of ions in an electrolyte solution to move in a thermal gradient. When these coefficients differ between cations and anions, an electric field can be generated. For this so-called electrolyte Seebeck effect to occur, different thermodiffusive fluxes need to be blocked by boundaries—electrodes, for example. Local charge neutrality is then broken in the Debye-length vicinity of the electrodes. Confusingly, many authors point to these regions as the source of the thermoelectric field yet ignore them in derivations of the time-dependent Seebeck coefficient S(t), giving a false impression that the electrolyte Seebeck effect is purely a bulk phenomenon. Without enforcing local electroneutrality, we derive S(t) generated by a binary electrolyte with arbitrary ionic valencies subject to a time-dependent thermal gradient. Next, we experimentally measure S(t) for five acids, bases, and salts near titanium electrodes. For the steady state, we find S ≈ 2 mV K−1 for many electrolytes, roughly one order of magnitude larger than the predictions based on literature αi. We fit our expression for S(t) to the experimental data, treating the αi as fit parameters, and also find larger-than-literature values, accordingly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    0
    Citations
    NaN
    KQI
    []