Matter waves in time-modulated complex light potentials

2000 
Temporal light modulation methods which are of great practical importance in optical technology, are emulated with matter waves. This includes generation and tailoring of matter-wave sidebands, using amplitude and phase modulation of an atomic beam. In the experiments atoms are Bragg diffracted at standing light fields, which are periodically modulated in intensity or frequency. This gives rise to a generalized Bragg situation under which the atomic matter waves are both diffracted and coherently shifted in their de Broglie frequency. In particular, we demonstrate creation of complex and non-Hermitian matter-wave modulations. One interesting case is a potential with a time-dependent complex helicity $[V\ensuremath{\propto}\mathrm{exp}(i\ensuremath{\omega}t)],$ which produces a purely lopsided energy transfer between the atoms and the photons, and thus violates the usual symmetry between absorption and stimulated emission of energy quanta. Possible applications range from atom cooling over advanced atomic interferometers to a new type of mass spectrometer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    24
    Citations
    NaN
    KQI
    []