Mode-locked diode lasers as sources for two-photon polymerization

2020 
In this study, we use a hybrid mode-locked external cavity diode laser with subsequent amplification and pulse compression. The system provides laser pulses of 440 fs width (assuming a sech² pulse shape) and 160 mW average output power at a repetition rate of 383.1 MHz. The laser oscillator consists of a double quantum well laser diode with a gain segment of 1080 μm length and an absorber element of 80 μm lengths. The chip’s back facet is covered with a high reflective coating, the front facet with an anti-reflective coating. The resonator itself is operated in a collimated geometry and folded by two dielectric mirrors. The used output coupler provides a transmission of 20 percent, which is coupled into a tapered amplifier. Two Faraday isolators are used to decouple the laser and the amplifier from any back reflections. Subsequently, the pulses are compressed using a single pass Martinez type pulse compressor. Experiments on Two-Photon Polymerization were conducted on a conventional setup consisting of a 2D galvo-scanner system with an attached microscope objective. The oil immersion objective (NA =1.4) focusses the light pulses through a cover glass into a droplet of the photosensitive material. Process monitoring can be achieved by observing the image on a camera placed behind a semi-transparent mirror in front of the galvo-scanner. Using this experimental setup, test structures that consist of free-hanging lines supported by cuboids were produced. In addition, a procedure for automated linewidth measurements is outlined and used for analyzation of the generated structures. This work shows that mode-locked diode lasers can be used for the fabrication of microstructures by Two-Photon Polymerization. Typically used Ti:Sapphire or fiber lasers can be replaced by mode-locked diode lasers for Two-Photon- Polymerization. This allows for much cheaper Two-Photon-Polymerization systems and therefore, may open this field for more application-based research groups.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []