Method of Lines Transpose: Energy Gradient Flows Using Direct Operator Inversion for Phase-Field Models

2017 
In this work, we develop an $\mathcal{O}(N)$ implicit real space method in 1D and 2D for the Cahn--Hilliard (CH) and vector Cahn--Hilliard (VCH) equations, based on the method of lines transpose (MOL$^{T}$) formulation. This formulation results in a semidiscrete time stepping algorithm, which we prove is gradient stable in the $H^{-1}$ norm. The spatial discretization follows from dimensional splitting and an $\mathcal{O}(N)$ matrix-free solver, which applies fast convolution to the modified Helmholtz equation. We propose a novel factorization technique, in which fourth-order spatial derivatives are incorporated into the solver. The splitting error is included in the nonlinear fixed point iteration, resulting in a high-order, logically Cartesian (line-by-line) update. Our method is fast but not restricted to periodic boundaries like the fast Fourier transform (FFT). The basic solver is implemented using the backward Euler formulation, and we extend this to both backward difference formula (BDF) stencils, ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    10
    Citations
    NaN
    KQI
    []