Thermal stability and conductivity of hot-pressed Si3N4–graphene composites

2014 
This study concerns new Si3N4–graphene composites manufactured using the hot-pressing method. Because of future applications of silicon nitride for cutting tools or specific parts of various devices having contact with high temperatures there is a need to find a ceramic composite material with good mechanical and especially thermal properties. Excellent thermal properties in the major directions are characteristic of graphene. In this study, the graphene phase is added to the silicon nitride phase in a quantity of up to 10 mass%, and the materials are sintered under uniaxial pressure. The mixture of AlN and Y2O3 is added as sintering activator to the composite matrix. The studies focus on thermal stability of produced composites in argon and air conditions up to the temperature of 1,000 °C. The research also concerns the influence of applied uniaxial pressure during the sintering process on the orientation of graphene nanoparticles in the Si3N4 matrix. The study also presents research on anisotropy of thermal diffusivity and following thermal conductivity of ceramic matrix composites versus the increasing graphene quantity. Most of the presented results have not been published in the literature yet.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    49
    Citations
    NaN
    KQI
    []