Kinetic study of the catalytic reforming of biomass pyrolysis volatiles over a commercial Ni/Al2O3 catalyst

2018 
Abstract An original kinetic model has been proposed for the reforming of the volatiles derived from biomass fast pyrolysis over a commercial Ni/Al 2 O 3 catalyst. The pyrolysis-reforming strategy consists of two in-line steps. The pyrolysis step is performed in a conical spouted bed reactor (CSBR) at 500 °C, and the catalytic steam reforming of the volatiles has been carried out in-line in a fluidized bed reactor. The reforming conditions are as follows: 600, 650 and 700 °C; catalyst mass, 0, 1.6, 3.1, 6.3, 9.4 and 12.5 g; steam/biomass ratio, 4, and; time on stream, up to 120 min. The integration of the kinetic equations has been carried out using a code developed in Matlab . The reaction scheme takes into account the individual steps of steam reforming of bio-oil oxygenated compounds, CH 4 and C 2 -C 4 hydrocarbons, and the WGS reaction. Moreover, a kinetic equation for deactivation has been derived, in which the bio-oil oxygenated compounds have been considered as the main coke precursors. The kinetic model allows quantifying the effect reforming conditions (temperature, catalyst mass and time on stream) have on product distribution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    11
    Citations
    NaN
    KQI
    []