Feasibility study on transcutaneous auricular vagus nerve stimulation using millimeter waves.

2021 
Objective. Electrical stimulation of the auricular vagus nerve is a non-invasive neuromodulation technique that has been used for various conditions, including depression, epilepsy, headaches, and cerebral ischemia. However, unwanted non-vagal nerve stimulations can occur because of diffused stimulations. The objective of this study is to develop a region-specific non-invasive vagus nerve stimulation (VNS) technique using the millimeter wave (MMW) as a stimulus for the auricular branch of the vagus nerve (ABVN).Approach. A numerical simulation was conducted to ascertain whether the MMW could excite the ABVN in the human outer-ear with a millimeter-scale spatial resolution. Additionally, MMW-induced neuronal responses in seven mice were evaluated. Transcutaneous auricular VNS (ta-VNS) was applied to the cymba conchae innervated by the AVBN using a 60-GHz continuous wave (CW). As a control, the auricle's exterior margin was stimulated and referred to as transcutaneous auricular non-vagus nerve stimulation (ta-nonVNS). During stimulation, the local field potential (LFP) in the nucleus tractus solitarii (NTS), an afferent vagal projection site, was recorded simultaneously.Main results. The ta-VNS with a stimulus level of 13 dBm showed a significant increase in the LFP power in the NTS. The mean increases in power (n = 7) in the gamma high and gamma very high bands were 8.6 ± 2.0% and 18.2 ± 5.9%, respectively. However, the ta-nonVNS with a stimulus level of 13 dBm showed a significant decrease in the LFP power in the NTS. The mean decreases in power in the beta and gamma low bands were 11.0 ± 4.4% and 10.8 ± 2.8%, respectively. These findings suggested that MMW stimulation clearly induced a different response according to the presence of ABVN.Significance. Selective auricular VNS is feasible using the MMW. This study provides the basis for the development of a new clinical treatment option using the stimulation of the ta-VNS with a square millimeter spatial resolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []