Novel Smart Waste Sorting System based on Image Processing Algorithms: SURF-BoW and Multi-class SVM

2018 
Aiming at solving the waste sorting problems of smart environmental sanitation, this paper proposes a novel smart waste sorting system, which consists of two sub-systems including a hardware system and a software system. The hardware system is of a trash bin framework based on the core module Raspberry Pi and the software one is of an image classification algorithm platform based on SURF-BoW algorithm and multi-class SVM classifier. In our experiment, the images produced during training and testing are both obtained from webcam in our system and extra processing with affine transformation and noise-adding operation. The experimental results show that among the five categories of waste, the battery waste performs best with 100% classification accuracy. Besides, the average classification accuracy is up to 83.38%. Therefore, our system has reliable practicability and robustness, which is expected to be applied to deal with the waste sorting problems in our daily life.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    5
    Citations
    NaN
    KQI
    []