A cost-effective process chain for thermoplastic microneedle manufacture combining laser micro-machining and micro-injection moulding

2021 
Abstract High-throughput manufacturing of transdermal microneedle arrays poses a significant challenge due to the high precision and number of features that need to be produced and the requirement of multi-step processing methods for achieving challenging micro-features. To address this challenge, we report a flexible and cost-effective process chain for transdermal microneedle array manufacture that includes mould production using laser machining and replication of thermoplastic microneedles via micro-injection moulding (micromoulding). The process chain also incorporates an in-line manufacturing data monitoring capability where the variability in the quality of microneedle arrays can be determined in a production run using captured data. Optical imaging and machine vision technologies are also implemented to create a quality inspection system that allows rapid evaluation of key quality indicators. The work presents the capability of laser machining as a cost-effective method for making microneedle moulds and micro-injection moulding of thermoplastic microneedle arrays as a highly-suitable manufacturing technique for large-scale production with low marginal cost.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    6
    Citations
    NaN
    KQI
    []