Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane

2020 
Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as substrate we cultured microbial consortia of a novel anaerobic ethane oxidizer Candidatus Ethanoperedens thermophilum (GoM-Arc1 clade) and its partner bacterium Candidatus Desulfofervidus auxilii previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieving a closed genome of Ca. Ethanoperedens, a sister genus of the recently reported ethane oxidizer Candidatus Argoarchaeum. The metagenome-assembled genome of Ca. Ethanoperedens encoded for a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as sole growth substrate and production of ethyl-coenzyme M as activation product. Stable isotope probing showed that the enzymatic mechanisms of ethane oxidation in Ca. Ethanoperedens is fully reversible, thus its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []