Modulation of gap junction-mediated intercellular communication in embryonic chick mesenchyme during tissue remodeling in vitro
1994
Gap junction-mediated intercellular communication was analyzed in a model system in which tissue necrosis and remodeling could be modulated. This in vitro system, previously used for analysis of epithelial-mesenchymal tissue interaction, was modified to permit analysis of the presence and extent of intercellular communition by monitoring intercellular transfer of the micro-injected fluorescent dye, Lucifer Yellow. Light and transmission electronmicroscopy were employed to correlate the presence and degree of gap junctional communication (coupling) with tissue morphology. Digital image analysis was used to determine cell density and mitotic indices within the outgrowths of explants. Our results indicated that cell communication in outgrowths adjacent to necrotic foci within an explant was minimal or absent. Cell-coupling in outgrowths adjacent to a compartment of viable mesenchyme was significantly higher-equivalent to unseparated control cultures. A time-course study demonstrated correlation of increased levels of cell-coupling in outgrowths with the level of tissue remodeling within an explant. Our conclusions from these studies are that embryonic mesenchymal cell populations may be selectively uncoupled as a result of alterations in the microenvironment produced by a proximate impaired cell population. It is proposed that endogenous factors in the microenvironment (“wound signals”), emanating from impaired cell populations, regulate gap junction-mediated intercellular communication in adjacent viable tissue. Normal, unimpaired populations of cells surrounding an area of injury are thereby isolated from the effects of a potentially toxic environment. This could serve as a protective function in development and may represent, in a more general sense, part of the repertoire of events associated with tissue repair and remodeling.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
29
References
6
Citations
NaN
KQI