Using time-resolved penumbral imaging to measure low hot spot x-ray emission signals from capsule implosions at the National Ignition Facility

2018 
We have developed and fielded a new x-ray pinhole-imaging snout that exploits time-resolved penumbral imaging of low-emission hot spots in capsule implosion experiments at the National Ignition Facility. We report results for a series of indirectly driven Be capsule implosions that aim at measuring x-ray Thomson scattering (XRTS) spectra at extreme density conditions near stagnation. In these implosions, x-ray emission at stagnation is reduced by 100–1000× compared to standard inertial confinement fusion (ICF) implosions to mitigate undesired continuum background in the XRTS spectra. Our snout design not only enables measurements of peak x-ray emission times, to, where standard ICF diagnostics would not record any signal, but also allows for inference of hot spot shapes. Measurement of to is crucial to account for shot-to-shot variations in implosion velocity and therefore to benchmark the achieved plasma conditions between shots and against radiation hydrodynamic simulations. Additionally, we used differ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []