Participation of C-H Protons in the Dissociation of a Proton Deficient Dipeptide

2017 
The dissociation of anionic dipeptides Phe*Gly and GlyPhe*, where Phe* refers to sulfonated phenyl alanine, has been investigated by using ion trap mass spectrometry. The dipeptides undergo collision-induced dissociation (CID) to give the same products, indicating that they rearrange to a common structure before dissociation. The rearrangement does not occur with the dipeptide methyl esters. The structures of the b2 ions were investigated to determine the effect that having a remote, anionic site has on product formation. Comparison with the CID spectra for authentic structures shows that the b2 ion obtained from GlyPhe* has predominantly a diketopiperazine structure. The CID spectra for the Phe*Gly b2 ion and the authentic oxazolone are similar, but differences in intensity suggest a two-component mixture. Isotopic labeling studies are consistent with the formation of two products, with one resulting from loss of a non-mobile proton on the Gly α-carbon. The results are attributed to the formation of an oxazole and oxazolone enol product. Electronic structure calculations predict that the enol structure of the Phe*Gly b2 ion is lower in energy than the keto version due to intramolecular hydrogen bonding with the sulfonate group.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []