Knockout of SETDB1 gene using the CRISPR/cas-9 system increases migration and transforming activities via complex regulations of E-cadherin, β-catenin, STAT3, and Akt.

2020 
Abstract SETDB1 HMTase participates in various cellular processes via epigenetic transcriptional regulation. SETDB1 expression is downregulated by anticancer drug treatment in cancer cells, but we still need to verify the functional significance on SETDB1 downregulation. CRISPR/cas9 is a useful technology for doing a knockout (KO) of a target gene. It is widely used to examine the function of genes. In this study, we prepared SETDB1-KO from A549 human lung cancer cells using the CRISPR/Cas9 system, and we compared molecular changes between the A549 cells and the SETDB1-KO cells. The SETDB1-KO cell proliferation rate was slightly decreased as compared to the A549 cells, but there was no large difference in sensitivity with doxorubicin treatment. Instead, the migration activity and transforming activity were dramatically increased in SETDB-KO cells. Using a western blot analysis and an immunostaining experiment, we confirmed that SETDB1-KO downregulates the expression of E-cadherin and β-catenin. A qPCR and an RT-PCR analysis suggested that SETDB1 transcriptionally regulates E-cadherin and β-catenin. Moreover, E-cadherin expression was also detected in the cytoplasmic region of SETDB1-KO cells, indicating that functional localization of E-cadherin might be changed in SETDB1-KO cells. On the other hand, total levels of STAT3 and Akt were increased in the SETDB1-KO cells, but activation of STAT3 (pSTAT3) was not induced in doxorubicin-treated SETDB1-KO cells. SETDB1 overexpression into SETDB1-KO cells restores the expression of E-cadherin, β-catenin, STAT3, and Akt, suggesting that those proteins are tightly regulated by SETDB1. Collectively, we suggest that complex regulations on E-cadherin, β-catenin, STAT3, and Akt are correlated with the increased migration and transforming activity of SETDB1-KO cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []