Multimodal, Multiparty Modeling of Collaborative Problem Solving Performance

2020 
Modeling team phenomena from multiparty interactions inherently requires combining signals from multiple teammates, often by weighting strategies. Here, we explored the hypothesis that strategic weighting signals from individual teammates would outperform an equal weighting baseline. Accordingly, we explored role-, trait-, and behavior-based weighting of behavioral signals across team members. We analyzed data from 101 triads engaged in computer-mediated collaborative problem solving (CPS) in an educational physics game. We investigated the accuracy of machine-learned models trained on facial expressions, acoustic-prosodics, eye gaze, and task context information, computed one-minute prior to the end of a game level, at predicting success at solving that level. AUROCs for unimodal models that equally weighted features from the three teammates ranged from .54 to .67, whereas a combination of gaze, face, and task context features, achieved an AUROC of .73. The various multiparty weighting strategies did not outperform an equal-weighting baseline. However, our best nonverbal model (AUROC = .73) outperformed a language-based model (AUROC = .67), and there were some advantages to combining the two (AUROC = .75). Finally, models aimed at prospectively predicting performance on a minute-by-minute basis from the start of the level achieved a lower, but still above-chance, AUROC of .60. We discuss implications for multiparty modeling of team performance and other team constructs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    2
    Citations
    NaN
    KQI
    []