Spatially confined quantification of bilirubin concentrations by spectroscopic visible-light optical coherence tomography

2018 
Spatially confined measurements of bilirubin in tissue can be of great value for noninvasive bilirubin estimations during neonatal jaundice, as well as our understanding of the physiology behind bilirubin extravasation. This work shows the potential of spectroscopic visible-light optical coherence tomography (sOCT) for this purpose. At the bilirubin absorption peak around 460 nm, sOCT suffers from a strong signal decay with depth, which we overcome by optimizing our system sensitivity through a combination of zero-delay acquisition and focus tracking. In a phantom study, we demonstrate the quantification of bilirubin concentrations between 0 and 650 µM with only a 10% difference to the expected value, thereby covering the entire clinical pathophysiological range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    13
    Citations
    NaN
    KQI
    []