Genetically Enhanced Lysozyme Evades a Pathogen Derived Inhibitory Protein

2015 
The accelerating spread of drug-resistant bacteria is creating demand for novel antibiotics. Bactericidal enzymes, such as human lysozyme (hLYZ), are interesting drug candidates due to their inherent catalytic nature and lack of susceptibility to the resistance mechanisms typically directed toward chemotherapeutics. However, natural antibacterial enzymes have their own limitations. For example, hLYZ is susceptible to pathogen derived inhibitory proteins, such as Escherichia coli Ivy. Here, we describe proof of concept studies demonstrating that hLYZ can be effectively redesigned to evade this potent lysozyme inhibitor. Large combinatorial libraries of hLYZ were analyzed using an innovative screening platform based on microbial coculture in hydrogel microdroplets. Isolated hLYZ variants were orders of magnitude less susceptible to E. coli Ivy yet retained high catalytic proficiency and inherent antibacterial activity. Interestingly, the engineered escape variants showed a disadvantageous increase in suscep...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    6
    Citations
    NaN
    KQI
    []