Cooling process and mechanical properties design of hot-rolled low carbon high strength microalloyed steel for automotive wheel usage

2014 
Abstract For the purpose of developing Nb–V–Ti microalloyed, hot rolled, high strength automotive steel for usage in heavy-duty truck wheel-discs and wheel-rims, appropriate cooling processes were designed, and microstructures and comprehensive mechanical properties (tension, bending, hole-expansion, and Charpy impact) of the tested steels at two cooling schedules were studied. The results indicate that the steel consists of 90% 5 μm polygonal ferrite and 10% pearlite when subjected to a cooling rate of 13 °C/s and a coiling temperature of 650 °C. The yield strength, tensile strength, and hole-expansion ratio are 570 MPa, 615 MPa, and 95%, respectively, which meet the requirements of the wheel-disc application. The steel consists of 20% 3 μm polygonal ferrite and 80% bainite (granular bainite and a small amount of acicular ferrite) when subjected to a cooling rate of 30 °C/s and a coiling temperature of 430 °C. The yield strength, tensile strength, and hole-expansion ratio are 600 MPa, 655 MPa, and 66%, respectively, which meet the requirements of the wheel-rim application. Both the ferrite–pearlite steel and ferrite–bainite steel possess excellent bendability and Charpy impact property. The precipitation behavior and dislocation pattern are characterized and discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    32
    Citations
    NaN
    KQI
    []