An Alternative Approach for the Determination of Mean Free Paths of Electron Scattering in Liquid Water Based on Experimental Data

2020 
Mean free paths of low-energy electrons in liquid water are of importance for modelling many physico-chemical processes, but neither theoretical nor experimental predictions have converged for these parameters. We therefore introduce an approach to determine elastic and inelastic mean free paths (EMFP, IMFP) based on experimental data. We show that ab-initio calculations of electron scattering with water clusters converge with cluster size, thus providing access to condensed-phase scattering. The results are used in Monte-Carlo simulations to extract EMFP and IMFP from recent liquid-microjet experiments that determined the effective attenuation length (EAL) and the photoelectron angular distribution (PAD) following oxygen 1s-ionization of liquid water. For electron kinetic energies from 10 eV to 300 eV, we find that the IMFP is noticeably larger than the EAL. The EMFP is longer than that of gas-phase water and the IMFP is longer compared to latest theoretical estimations, but both EMFP and IMFP are much s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    7
    Citations
    NaN
    KQI
    []