Empirical Characterization of the SMOS Brightness Temperature Bias and Uncertainty for Improving Sea Surface Salinity Retrieval

2019 
After more than eight years of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) acquisitions, an exhaustive, empirical characterization of the biases and uncertainties affecting SMOS brightness temperatures over the ocean is possible. We show that both parameters strongly depend not only on the position in the field of view, but also on the geographical location of the acquisition. Metrics based on the differences between expected and theoretical values of the bias and the uncertainty are developed and used for quantitatively assessing the locations where SMOS errors are currently not accurately characterized. This characterization can be used for the definition of a new empirical SMOS sea surface salinity (SSS) bias correction, a better cost function retrieval, and more accurate filtering criteria, which are expected to lead to a better SMOS SSS Level 2 product. We present a new L2 SMOS SSS product based on the described investigation. The performance of this preliminary product is similar to that of the version v662 of the official L2 SMOS SSS product at medium and low latitudes. However, it provides a better coverage at high latitudes and coastal regions affected by radio frequency interference (RFI), which correspond to those regions where the SMOS errors are currently poorly estimated.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []