Load variation compensated neural network speed controller for induction motor drives

2008 
In this paper, a recurrent artificial neural network (RNN) based self-tuning speed controller is proposed for the high-performance drives of induction motors. The RNN provides a nonlinear modeling of a motor drive system and could provide the controller with information regarding the load variation, system noise, and parameter variation of the induction motor through the online estimated weights of the corresponding RNN. Thus, the proposed self-tuning controller can change the gains of the controller according to system conditions. The gain is composed with the weights of the RNN. For the on-line estimation of the RNN weights, an extended Kalman filter (EKF) algorithm is used. A self-tuning controller is designed that is adequate for the speed control of the induction motor. The availability of the proposed controller is verified through MATLAB simulations and is compared with the conventional PI controller.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    1
    Citations
    NaN
    KQI
    []