Hinge-shift mechanism as a protein design principle for the evolution of β-lactamases from substrate promiscuity to specificity.

2021 
TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a conformational dynamics computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the conformational dynamics of a putative Precambrian β-lactamase, we engineer enzyme specificity that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements. Our conformational dynamics design thus re-enacts the evolutionary process and provides a rational allosteric approach for manipulating function while conserving the enzyme active site. TEM-1 β-lactamase evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency and degrades β-lactam antibiotics with a strong preference for penicillins. Here authors developed a computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism and show a putative Precambrian β-lactamase that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    6
    Citations
    NaN
    KQI
    []