Semantic representations of images and videos

2019 
Recent research in Deep Learning has sent the quality of results in multimedia tasks rocketing: thanks to new big datasets of annotated images and videos, Deep Neural Networks (DNN) have outperformed other models in most cases. In this thesis, we aim at developing DNN models for automatically deriving semantic representations of images and videos. In particular we focus on two main tasks : vision-text matching and image/video automatic captioning. Addressing the matching task can be done by comparing visual objects and texts in a visual space, a textual space or a multimodal space. Based on recent works on capsule networks, we define two novel models to address the vision-text matching problem: Recurrent Capsule Networks and Gated Recurrent Capsules. In image and video captioning, we have to tackle a challenging task where a visual object has to be analyzed, and translated into a textual description in natural language. For that purpose, we propose two novel curriculum learning methods. Moreover regarding video captioning, analyzing videos requires not only to parse still images, but also to draw correspondences through time. We propose a novel Learned Spatio-Temporal Adaptive Pooling method for video captioning that combines spatial and temporal analysis. Extensive experiments on standard datasets assess the interest of our models and methods with respect to existing works.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []