Simulation and test of flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite

2016 
The flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced engineered cementitious composite with characteristics of low drying shrinkage special focus on impacts of steel fiber content and matrix strength has been investigated in both experimental and theoretical aspects in this paper. Four matrix types with water to binder ratio of 0.25, 0.35, 0.45, and 0.55 and three additional steel fiber contents in the composite with polyvinyl alcohol fiber content of 1.7% in volume were used in the test program. The experimental results show that cracking and flexural strength of the composites are increased with the addition of steel fiber. This enhancement becomes more and more pronounced with decreasing of water to binder ratio of the composites. Meanwhile, fracture mechanics-based flexural model is used to simulate the flexure performance of the polyvinyl alcohol -steel hybrid fiber reinforced engineered cementitious composite with characteristics of low drying shrinkage. The model results show...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    18
    Citations
    NaN
    KQI
    []